arviz.mcse#
- arviz.mcse(data, *, var_names=None, method='mean', prob=None, dask_kwargs=None)[source]#
Calculate Markov Chain Standard Error statistic.
- Parameters:
- data
obj Any object that can be converted to an
arviz.InferenceDataobject Refer to documentation ofarviz.convert_to_dataset()for details For ndarray: shape = (chain, draw). For n-dimensional ndarray transform first to dataset withaz.convert_to_dataset.- var_names
list Names of variables to include in the rhat report
- method
str Select mcse method. Valid methods are: - “mean” - “sd” - “median” - “quantile”
- prob
float Quantile information.
- dask_kwargs
dict, optional Dask related kwargs passed to
wrap_xarray_ufunc().
- data
- Returns:
xarray.DatasetReturn the msce dataset
See also
Examples
Calculate the Markov Chain Standard Error using the default arguments:
In [1]: import arviz as az ...: data = az.load_arviz_data("non_centered_eight") ...: az.mcse(data) ...: Out[1]: <xarray.Dataset> Size: 656B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu float64 8B 0.08102 theta_t (school) float64 64B 0.02339 0.01925 0.02092 ... 0.01931 0.01906 tau float64 8B 0.0791 theta (school) float64 64B 0.1285 0.103 0.1306 ... 0.1158 0.1193 0.1218 Attributes: created_at: 2022-10-13T14:37:26.351883 arviz_version: 0.13.0.dev0 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 4.738754749298096 tuning_steps: 1000
Calculate the Markov Chain Standard Error using the quantile method:
In [2]: az.mcse(data, method="quantile", prob=0.7) Out[2]: <xarray.Dataset> Size: 656B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu float64 8B 0.1305 theta_t (school) float64 64B 0.034 0.02491 0.0319 ... 0.02363 0.03383 tau float64 8B 0.1145 theta (school) float64 64B 0.1776 0.1047 0.1426 ... 0.156 0.1508 0.1209 Attributes: created_at: 2022-10-13T14:37:26.351883 arviz_version: 0.13.0.dev0 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 4.738754749298096 tuning_steps: 1000